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Motivation and needs 2

The modeling of electrical transmission lines (for both 
transmission and distribution of electricity) represents a 
fundamental element to perform the following analysis:

Ø evaluation of the voltage profile along the line;
Ø balance of reactive powers;
Ø losses evaluation for the assessment of the electricity 

transportation efficiency;
Ø definition of the line models for load flow calculation;
Ø modeling of ampacity and congestion constrains;
Ø …
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1. The line geometry is 
uniform;

2. The line is infinitely long;

Let us refer to the geometry in 
the figure.

3. The line is composed by 𝑛	conductors, parallel among each 
other and with respect to the ground. The height with respect 
to the ground of the 𝑖!" conductor is ℎ#. The conductors are 
made of an electrically conductive material of finite 
conductivity 𝜎$. The ground is assumed to have an infinite 
conductivity, 𝜎% = ∞.
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General conductors’ geometry of an electrical 
transmission line.
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4. The transverse dimensions 
(cross sectional 
dimensions) of the line 
are small compared to 
the minimum wavelength 
𝜆min of the electrical 
propagation phenomena 
taking place along the 
line. We can then 
consider that 
propagation occurring 
only along the 𝑥 axis, 
and, as we shall see, the 
line can be represented 
by a distributed-
parameter structure 
along its x-axis.
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General conductors’ geometry of an electrical 
transmission line.
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Observation: is HP4 verified in practice ?
We remind that the wavelength 𝜆 of the propagative phenomena 
takin place along the line is associated to the frequency 𝑓 of the 
wavelength and its propagation speed 𝑣:

𝑣 = 𝜆𝑓

Let us consider an overhead line, in this case the value of 𝑣 is very 
close to the speed of light, namely 2.9979 0 10& '

(
, therefore assuming 

the European nominal frequency of 𝑓 = 50 𝐻𝑧, we get:

𝜆 =
).++,+-./!"#

0/ 12
≅ 6 0 103𝑚.

In view of the above, we can conclude that Hp4 is satisfied in 
practice. It is interesting to note that Hp4 is satisfied also for larger 
frequencies. Therefore, the model we are about to obtain can be 
applied to study phenomena with higher frequencies (i.e., up to 
some MHz).

Hypotheses
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5. The line response is quasi-TEM (transverse electromagnetic), i.e. 
the electromagnetic field outside the conductors produced by the 
electric charges and currents along them, is confined in the 
transverse plane perpendicular to the line x-axis. (Note that it is 
practically impossible to have the response of a line to be purely TEM. In 
fact, a pure TEM mode would occur only for the case of a perfectly 
conducting conductor and ground).

6. The sum of the line currents at any cross section of the line is zero, 
i.e. the ground – the reference conductor – is the return path for 
the currents in the 𝑛 overhead conductors. (This means that we are 
considering only ‘transmission line mode’ currents and neglecting the so-
called ‘antenna-mode’ currents. If we desire to compute the load 
responses of the line, this assumption is adequate, because the antenna 
mode current response is small near the ends of the line. Along the line, 
however, the presence of antenna-mode currents makes that the sum of 
the currents at a cross section is not necessarily equal to zero. However, 
the quasi-symmetry due to the presence of the ground plane results in a 
very small contribution of antenna mode currents and consequently, the 
predominant mode on the line will be transmission line.)

Hypotheses
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To simplify the derivation, we will refer to a single-conductor line (see 
figure)

From field theory to equivalent circuit
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ScLet us recall the first Maxwell’s 
equation written in the time and 
frequency domains, 
respectively:

∇×𝐄 = −
𝜕𝐁
𝜕𝑡

∇×𝐄 = −𝑗𝜔𝐁

where 𝐄, 𝐁 are the vectors of the 
electric and magnetic fields. Let 
us apply the Stoke’s theorem to 
the previous equation in the 
frequency-domain and to the 
oriented surface 𝑆 with boundary 
𝜕𝑆.

𝜕𝑆

D
45
𝐄 0 𝑑𝑙 = −𝑗𝜔G

5
𝐁 0 𝑑𝑆

Note: in the coming slides 
there is an abuse of 
nomenclature since we will 
indicate the electric field with 
the letter 𝐸 that, so far, has 
been used to indicate the 
phase-to-ground voltage. 

Representation of a section Δ𝑥 of a
single-conductor overhead transmission line.
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We can write the first term of the previous equation as the sum of the 
integrals over the edges of the boundary 𝜕𝑆.

From field theory to equivalent circuit
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Representation of a section Δ𝑥 of a
single-conductor overhead transmission line.
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𝐄 0 𝑑𝑠 = −I

/

"
𝐸2 𝑥 + Δ𝑥, 0, 𝑧 − 𝐸2 𝑥, 0, 𝑧 𝑑𝑧 + I

6

6786
𝐸6 𝑥, 0, ℎ 𝑑𝑥

It is worth noting that Hp5 applies outside the conductors. Therefore, 
the integral of the electric field on edge 𝐼𝐼	is ≠ 0 (i.e., field along the 
conductor) and corresponds to the conductor’s voltage over Δ𝑥.

𝜕𝑆

Due to Hp4 and Hp5, we have 
that the integration of the 
electric field along the edges 𝑰 
and 𝑰𝑰𝑰 in the figure, contains 
only the vertical component of 
the electric field (𝐸2). 
Furthermore, thanks to Hp3 (𝜎% =
∞), we have that the electric 
field inside the ground is zero, so 
it is its integral along the edge 𝑰𝑽. 
So we get:
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Regarding the magnetif field, Hp5 allows to conclude that, if in the 
conductor the is a current 𝐼, the its produced magnetic field is 

From field theory to equivalent circuit
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−𝑗𝜔G
5
𝐁 0 𝑑𝑆 =

= −𝑗𝜔I
6

6786
I
/

"
𝐵9 𝑥, 0, 𝑧 𝑑𝑧 𝑑𝑥

𝜕𝑆

perpendicular to the surface 𝑆 
and can be represented by the 
sole component 𝐵9. Therefore, 
we can write the 

Representation of a section Δ𝑥 of a
single-conductor overhead transmission line.
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From the previous equations, we can derive the following three limits:

lim
86→/

−
1
Δ𝑥

I
/

"
𝐸2 𝑥 + Δ𝑥, 0, 𝑧 − 𝐸2 𝑥, 0, 𝑧 𝑑𝑧 = −

𝜕
𝜕𝑥
I
/

"
𝐸2 𝑥, 0, 𝑧 𝑑𝑧

lim
86→/

1
Δ𝑥

I
6

6786
𝐸6 𝑥, 0, ℎ 𝑑𝑥 = 𝐸6 𝑥, 0, ℎ

lim
86→/

−
1
Δ𝑥 𝑗𝜔

I
6

6786
I
/

"
𝐵9 𝑥, 0, 𝑧 𝑑𝑧 𝑑𝑥 = −𝑗𝜔I

/

"
𝐵9 𝑥, 0, 𝑧 𝑑𝑧

In what follows, we will simplify these three limits to help the derivation 
of an equivalent electrical circuit of the line.

From field theory to equivalent circuit



13

The very first integral quantity to introduce derives from Hp3–Hp5. 
Indeed, thanks to these Hps, we have that the electric field produced 
by the line’s conductor, is conservative. Therefore, we can define the 
phase-to-ground voltage as follows (note that is path independent):

U𝑈 𝑥 = −I
/

"
𝐸2 𝑥, 0, 𝑧 𝑑𝑧

From the definition of the phase-to-ground voltage, we have that the 
first of the three limits can be written as follows:

lim
86→/

−
1
Δ𝑥

I
/

"
𝐸2 𝑥 + Δ𝑥, 0, 𝑧 − 𝐸2 𝑥, 0, 𝑧 𝑑𝑧 = −

𝜕
𝜕𝑥
I
/

"
𝐸2 𝑥, 0, 𝑧 𝑑𝑧 =

=
𝑑U𝑈 𝑥
𝑑𝑥

Where U𝑈 𝑥  is the phasor of the conductor’s phase-to-ground voltage 
in correspondence of a generic point 𝑥 of the line.

From field theory to equivalent circuit



14
The result of the second limit 

lim
86→/

1
Δ𝑥

I
6

6786
𝐸6 𝑥, 0, ℎ 𝑑𝑥 = 𝐸6 𝑥, 0, ℎ

can be written in a different way by reminding the link between the 
electric field and the current density inside a conductor 𝐽 = 𝜎$𝐸. In 
particular, by assuming the skin effect being negligible, we have that 
the current density 𝐽 is constant over the conductor’s cross section 𝑆$. 
Therefore, we have:

̅𝐽 𝑥 =
̅𝐼 𝑥
𝑆$

= 𝜎$𝐸6 𝑥, 0, ℎ → 𝐸6 𝑥, 0, ℎ =
1

𝑆$𝜎$
̅𝐼 𝑥 = 𝜌$

1
𝑆$

̅𝐼 𝑥

Where ̅𝐼 𝑥  is the phasor of the current circulating on the conductor in 
a generic point 𝑥 of the line and 𝜎$, 𝜌$ the conductor’s electrical 
conductivity and resistivity, respectively. From the previous equation, 
we can observe that the term 𝜌$

.
5%

 is the per-unit of length conductor’s 
electrical resistance 𝑟. So, we have:

𝐸6 𝑥, 0, ℎ = 𝑟 ̅𝐼 𝑥

From field theory to equivalent circuit



15
The result of the third limit 

lim
86→/

−
1
Δ𝑥

𝑗𝜔I
6

6786
I
/

"
𝐵9 𝑥, 0, 𝑧 𝑑𝑧 𝑑𝑥 = −𝑗𝜔I

/

"
𝐵9 𝑥, 0, 𝑧 𝑑𝑧

can be written in a different way by leveraging Hp4 and Hp5. Indeed, 
we can say that the magnetic field 𝐵9 𝑥, 0, 𝑧 	is related to the current 
circulating along the conductor ̅𝐼 𝑥  by means of the conductor’s 
per-unit of length induction coefficient 𝑙′:

𝑙; =
∫/
"𝐵9 𝑥, 0, 𝑧 𝑑𝑧

̅𝐼 𝑥

From field theory to equivalent circuit
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Thanks to these developments, we can rewrite

D
45
𝐄 0 𝑑𝑠 = −𝑗𝜔G

5
𝐁 0 𝑑𝑆

= −I
/

"
𝐸2 𝑥 + Δ𝑥, 0, 𝑧 − 𝐸2 𝑥, 0, 𝑧 𝑑𝑧 + I

6

6786
𝐸6 𝑥, 0, ℎ 𝑑𝑥

as follows:

𝑑U𝑈 𝑥
𝑑𝑥

+ 𝑟 ̅𝐼 𝑥 + 𝑗𝜔𝑙; ̅𝐼 𝑥 = 0

or, by defining the per-unit length impedance of the line ̅𝑧 = 𝑟 + 𝑗𝜔𝑙;

𝑑U𝑈 𝑥
𝑑𝑥

+ ̅𝑧 ̅𝐼 𝑥 = 0

The above is the first transmission lines (or telegraphers’) equation.

From field theory to equivalent circuit
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The second transmission lines equation, can be derived by applying 
the charge conservation law to the conductor’s cylindrical section of 
the line in the figure.

From field theory to equivalent circuit

By indicating the conductor’s 
charge density per-unit of 
length as 𝑞′ 𝑥, 𝑡 , we can 
apply the charge 
conservation law to the 
conductor’s cylinder of 
section 𝑆$ and length Δ𝑥:

𝑖 𝑥, 𝑡 − 𝑖 𝑥 + Δ𝑥, 𝑡

=
𝑑
𝑑𝑡

𝑞′ 𝑥, 𝑡 Δ𝑥

By re-writing the above equation in the frequency domain, we get:
̅𝐼 𝑥 − ̅𝐼 𝑥 + Δ𝑥

Δ𝑥
= 𝑗𝜔_𝑞′ 𝑥

86→/𝑑 ̅𝐼 𝑥
𝑑𝑥

= −𝑗𝜔_𝑞′ 𝑥
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The term _𝑞 𝑥  can be re-written by considering that the line conductor 
and the ground are an electrical structure that can be assimilated to 
a capacitor. Indeed, the line conductor and the ground are two

From field theory to equivalent circuit

conductive elements 
separated by a dielectric 
material (i.e. air). Therefore, 
the conductor’s charge 
density per-unit of length _𝑞′ 𝑥  
can be linked to the 
conductor’s voltage U𝑈 𝑥  via 
the line per-unit length 
capacitance 𝑐’

_𝑞′ 𝑥 = 𝑐′U𝑈 𝑥

Therefore, we have:

𝑑 ̅𝐼 𝑥
𝑑𝑥

+ 𝑗𝜔𝑐′U𝑈 𝑥 = 0
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In case we would like to take into account the fact that the electrical 
insulator between the conductor’s line and the ground is not ideal (i.e., 
it has active power losses), we need to admit the presence

From field theory to equivalent circuit
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Scof a resistive element in 
parallel to the capacitance 𝑐’ 
in the form of a per-unit length 
conductance 𝑔.

In this case, the previous 
equation becomes:

𝑑 ̅𝐼 𝑥
𝑑𝑥

+ 𝑔U𝑈 𝑥 + 𝑗𝜔𝑐′U𝑈 𝑥 = 0

or, by defining the per-unit length shunt admittance of the line _𝑦 = 𝑔 +
𝑗𝜔𝑐′, we have:

𝑑 ̅𝐼 𝑥
𝑑𝑥

+ _𝑦U𝑈 𝑥 = 0

The above is the second transmission lines (or telegraphers’) equation.

Dx
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It is worth noting that the same derivation can be obtained if we 
consider a transmission line geometry given by a coaxial cable.

From field theory to equivalent circuit
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It is interesting to observe that the two transmission lines (or 
telegraphers’) equations:

𝑑U𝑈 𝑥
𝑑𝑥

+ ̅𝑧 ̅𝐼 𝑥 = 0

𝑑 ̅𝐼 𝑥
𝑑𝑥

+ _𝑦U𝑈 𝑥 = 0

are equivalent to the following electrical circuit associated to an 
infinitesimal length 𝑑𝑥 of the line.

The distributed parameters circuit

rdx jwl’dx

gdx jwc’dx

dx

( )xU ( ) ( )xUdxU +

( ) ( )xIdxI +( )xI
( )xId

( )xUd

+
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Indeed, the first transmission line equation can be obtained by 
applying the KVL to the loop indicated in the figure:

U𝑈 𝑥 = 𝑟 + 𝑗𝜔𝑙′ 𝑑𝑥 ̅𝐼 𝑥 + U𝑈 𝑥 + 𝑑U𝑈 𝑥

𝑑U𝑈 𝑥 + 𝑟 + 𝑗𝜔𝑙′ 𝑑𝑥 ̅𝐼 𝑥 = 0

𝑑U𝑈 𝑥
𝑑𝑥

+ ̅𝑧 ̅𝐼 𝑥 = 0

The distributed parameters circuit
rdx jwl’dx

gdx jwc’dx

dx

( )xU ( ) ( )xUdxU +

( ) ( )xIdxI +( )xI
( )xId

( )xUd

+
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While the second transmission line equation can be obtained by 
applying the KCL to the node indicated in the figure:

̅𝐼 𝑥 = 𝑔 + 𝑗𝜔𝑐′ 𝑑𝑥 U𝑈 𝑥 + 𝑑U𝑈 𝑥 + ̅𝐼 𝑥 + 𝑑 ̅𝐼 𝑥

𝑑 ̅𝐼 𝑥 + 𝑔 + 𝑗𝜔𝑐′ 𝑑𝑥U𝑈 𝑥 = 0

𝑑 ̅𝐼 𝑥
𝑑𝑥

+ _𝑦U𝑈 𝑥 = 0

Note: in the above derivation, the second-order differential 𝑑U𝑈 𝑥 𝑑𝑥 
has been neglected with respected to the first order one 𝑑 ̅𝐼 𝑥 .

The distributed parameters circuit
rdx jwl’dx

gdx jwc’dx

dx

( )xU ( ) ( )xUdxU +

( ) ( )xIdxI +( )xI
( )xId

( )xUd

+



25The distributed parameters circuit
The equivalent electrical circuit associated to an infinitesimal length 
𝑑𝑥 of the line can be extended along the whole length of the line and 
obtain the so-called distributed parameters equivalent equivalent 
circuit (or model).

Note: in the above figure there is a change of nomenclature 
regarding the phase-to-ground voltage: indeed, to be coherent with 
the symbols used in three-phase circuits, this voltage is indicated as _𝐸.

rdx

gdx

dx

xE

xx IdI +xI

xId

xEd

+
xx EdE +

pE
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