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Motivation and needs n

The modeling of electrical transmission lines (for both
transmission and distribution of electricity) represents @
fundamental element to perform the following analysis:

> evaluation of the voltage profile along the line;

> balance of reactive powers;

> losses evaluation for the assessment of the electricity
transportation efficiency;

definition of the line models for load flow calculation;
modeling of ampacity and congestion constrains;
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Hypotheses

Let us refer to the geometry in
the figure.
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1. Theline geometry is A TW/Y ,
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uniform; %, & /
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2. The line is infiniiely Iong; General conductors’ geometry of an electrical
transmission line.

3. Theline is composed by n conductors, parallel among each
other and with respect to the ground. The height with respect
to the ground of the it* conductor is h;. The conductors are
made of an electrically conductive material of finite
conductivity .. The ground is assumed to have an infinite
conductivity, g, = co.



Hypotheses

4. The transverse dimensions
(cross sectional
dimensions) of the line
are small compared to
the minimum wavelength
A,... of the electrical
propagation phenomena

taking place along the %’W/W/W,M////’////////

line. We can then , :
) General conductors’ geometry of an electrical
consider that transmission line.

propagation occurring
only along the x axis,
and, as we shall see, the
line can be represented
by a distributed-
parameter structure
along its x-axis.
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Hypotheses n

Observation: is HP4 verified in practice ?

We remind that the wavelength 4 of the propagative phenomena
takin place along the line is associated to the frequency f of the
wavelength and its propagation speed v:

v=Af

Let us consider an overhead line, in this case the value of v is very
close to the speed of light, namely 2.9979 - 108 ? therefore assuming

the European nominal frequency of f = 50 Hz, we get:
3 2.9979.108

S ~ 4. 6
A= S0 = 6-10°m.

In view of the above, we can conclude that Hp4 is satisfied in
practice. It is interesting to note that Hp4 is satisfied also for larger
frequencies. Therefore, the model we are about to obtain can be
applied to study phenomena with higher frequencies (i.e., up to
some MHz).



Hypotheses

5. The line response is quasi-TEM (transverse electromagnetic), i.e.
the electromagnetic field outside the conductors produced by the
electric charges and currents along them, is confined in the
transverse plane perpendicular to the line x-axis. (Note that it is

practically impossible to have the response of a line to be purely TEM. In
fact, a pure TEM mode would occur only for the case of a perfectly
conducting conductor and ground).

6. The sum of the line currents at any cross section of the line is zero,
l.e. the ground — the reference conductor —is the return path for

the currents in the n overhead conductors. (This means that we are
considering only ‘transmission line mode’ currents and neglecting the so-
called ‘antenna-mode’ currents. If we desire to compute the load
responses of the line, this assumption is adequate, because the antenna
mode current response is small near the ends of the line. Along the line,
however, the presence of antenna-mode currents makes that the sum of
the currents at a cross section is not necessarily equal to zero. However,
the quasi-symmetry due to the presence of the ground plane results in @

very small contribution of antenna mode currents and consequently, the
predominant mode on the line will be fransmission line.)
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From the field theory to
fransmission line equivalent
circuit




From field theory to equivalent circuit K3

To simplify the derivation, we will refer to a single-conductor line (see
figure)

Let us recall the first Maxwell’s % ‘ﬁ—‘f’ -
equation written in the time and T ’ T
frequency domains, V
respectively:
ﬁB h 1 yig

VXE = 3¢ VXE = —jwB Z[ N
where E,B are the vectors of the ¢——= | .
electric and magnetic fields. Let 77 o777 ! |
us apply the Stoke's theorem to . c+AT
the previous equo’rion in the Representation of a section Ax of a

. single-conductor overhead transmission line.
frequency-domain and to the

oriented surface S with boundary | o
Note: in the coming slides
(')S there is an abuse of
nomenclature since we will
_ . indicate the electric field with
f E-dl = —Jjw fj B-ds the letter E that, so far, has
dS S

been used to indicate the
phase-to-ground voltage.



From field theory to equivalent circuit m

We can write the first term of the previous equation as the sum of the
integrals over the edges of the boundary 4S.

Due to Hp4 and HpS, we have S

Ax
] - -
that the integration of the - v m-
electric field along the edges I f/s
and III in the figure, contains
only the vertical component of h I i
the electric field (E,). .
as
, /

Furthermore, thanks to Hp3 (o, =

w), we have that the electric ST ' Z
field inside the ground is zero, so %" | v

it is its integral along the edge IV. x rHAx
Representation of a section Ax of a

Sowe geT: single-conductor overhead transmission line.

h x+Ax
f E-ds = —f (Ez(x + Ax,0,z) — E,(x,0, Z)) dz + J E,.(x,0,h) dx
dS 0 X

It is worth noting that Hp5 applies outside the conductors. Therefore,
the integral of the electric field on edge Il'is # 0 (i.e., field along the
conductor) and corresponds to the conductor’s voltage over Ax.



From field theory to equivalent circuit o

Regarding the magnetif field, Hpb allows to conclude that, if in the
conductor the is a current I, the its produced magnetic field is
Ax

perpendicular to the surface S 5

J7 --
and can be represented by the T v o
sole component B,,. Therefore, f/s
we can write the
h 1 117
o 1 '
aS

- dS =
x+Ax ¥y x Y : 7
= —ja)j f By(x, 0,z)dz dx 7 o0 77 v
X 0 )Ic x%LAx

Representation of a section Ax of a
single-conductor overhead transmission line.



From field theory to equivalent circuit n

From the previous equations, we can derive the following three limits:

0 h
Al)lcrz)lo—— (E (x+ Ax,0,z) — E,(x,0, z))dz— —ajo E,(x,0,z)dz
1 x+Ax
lim — E,.(x,0,h)dx = E,(x,0,h)

AerAx

x+Ax h
lim ——]a)f j By (x,0,z)dzdx = —]wj By, (x,0,z)dz
Ax—-0 0

In what follows, we will simplify these three limits to help the derivation
of an equivalent electrical circuit of the line.



From field theory to equivalent circuit m

The very first integral quantity to infroduce derives from Hp3-Hp5.
Indeed, thanks to these Hps, we have that the electric field produced
by the line’s conductor, is conservative. Therefore, we can define the
phase-to-ground voltage as follows (note that is path independent):

h

U(x) = —f E,(x,0,2)dz
0

From the definition of the phase-to-ground voltage, we have that the
first of the three limits can be written as follows:

_ 1 a ("
AIJICILIO _EJO (Ez(x + Ax,0,z) — E,(x,0, Z)) dz = —afo E,(x,0,z)dz =
_dU(x)
 dx

Where U(x) is the phasor of the conductor’'s phase-to-ground voltage
in correspondence of a generic point x of the line.



From field theory to equivalent circuit n

The result of the second limit

1 x+Ax
Jim L E,(x,0,h) dx = E,(x,0, h)

can be written in a different way by reminding the link between the
electric field and the current density inside a conductor ] = ¢ .E. In
particular, by assuming the skin effect being negligible, we have that
the current density J is constant over the conductor’s cross section S..
Therefore, we have:

Ty = 1)

_ 1 _
=o.E,.(x,0,h E.(x,0,h) = I =p.—1
S, ocEx(x ) = Ex(x ) S.o, (x) = pc S, (x)

Where I(x) is the phasor of the current circulating on the conductor in
a generic point x of the line and o, p. the conductor’s electrical
conductivity and resistivity, respectively. From the previous equation,

we can observe that the ferm ,oCSl is the per-unit of length conductor’s
electrical resistance r. So, we have:

E.(x,0,h) =rl(x)



From field theory to equivalent circuit 15

The result of the third limit

h

x+Ax
lim ——]a)f j By (x,0,z)dz dx = —]wj By, (x,0,z)dz
Ax—0 0

can be written in a different way by leveraging Hp4 and Hpb. Indeed,
we can say that the magnetic field B, (x, 0, z) is related to the current

circulating along the conductor I(x) by means of the conductor’s
per-unit of length induction coefficient '

) Oh By (x,0,z)dz
I1(x)

' =



From field theory to equivalent circuit 16

Thanks to these developments, we can rewrite

§ v = o [ Bas
aS S

h x+Ax
__ f (E,Cx + Ax, 0,2) — E, (x,0,2)) dz + f E,(x,0,h) dx
0 X

as follows:
dUu _ _
O T + jel' T = 0
dx
or, by defining the per-unit length impedance of the line z = r + jwl’
dUu _
C) | 2T = 0
dx

The above is the first transmission lines (or telegraphers’) equation.



From field theory to equivalent circuit

The second transmission lines equation, can be derived by applying
the charge conservation law o the conductor’s cylindrical section of
the line in the figure.

charge density per-unit of i) | G+ Ax)
length as ¢'(x, t), we can | |
apply the charge

conservation law to the .
conductor’s cylinder of

section S, and length Ax: l

Y X Y

By i N d iC a ﬁ N g Th e con d U Ci'OI" S - : — e (O] ) e -

i(x,t) —i(x+ Ax,t) g
d | |
= = (q'(x, )Ax) x rhAx

By re-writing the above equation in the frequency domain, we get:

I(x) = I(x +Ax) 7 )Ax—>0dl_(x)
Ax — O dx

= —jwq' (x)



From field theory to equivalent circuit n

The term g(x) can be re-written by considering that the line conductor
and the ground are an electrical structure that can be assimilated to
a capacitor. Indeed, the line conductor and the ground are two

conductive elements % _
separa’rec} by a dielectric B P vy
material (i.e. air). Therefore, ' |
the conductor’'s charge

density per-unit of length g’ (x) h

can be linked to the z

conductor’s voltage U(x) vio

the line per-unit length yoox

capacitance ¢’ o | |
g (x) =c'U(x) ! e

Therefore, we have:

dl(x)
dx

+jwc'U(x) =0



From field theory to equivalent circuit n

In case we would like to take into account the fact that the electrical
insulator between the conductor’s line and the ground is not ideal (i.e.,
it has active power losses), we need to admit the presence

of a resistive element in oo S = -
parallel to the capacitance ¢’ T e LAy
in the form of a per-unit length | |

conductance g.

In this case, the previous

equation becomes: )
dl(x)

— . = . Yy
7 + gU(x) +jwc'U(x) =0 p—
)IC x%v-Ax
or, by defining the per-unit length shunt admittance of the line y = g +
jwc', we have:

dl(x)
dx
The above is the second transmission lines (or telegraphers’) equation.

+yU(x) =0



From field theory to equivalent circuit m

It is worth noting that the same derivation can be obtained if we
consider a transmission line geometry given by a coaxial cable.

Cable end (side view)

emicon

_ Conducting shield
'~ (tape or wire)

<]
® Jacket




Outline

The line distributed parameters
equivalent circuit




The distributed parameters circuit m

It is interesting to observe that the two tfransmission lines (or
telegraphers’) equation:s:

AU | i = 0
dx

di(x) __ .
7 +yU(x) =0

are equivalent to the following electrical circuit associated to an
infinitesimal length dx of the line.

rdx joldx

I(x) == —NMW——TI T ails] [ I)rdl)

dU (x)
() @ gdx § == jocds |G()di ()

dx

Y

|



The distributed parameters circuit

rdx joldx

i N 1di(x) i

U(x) @ gax — Jac'dx \i7(x)1dU (x)

dx

— _—
-

—— I_(x)+ df(x)

Indeed, the first transmission line equation can be obtained by
applying the KVL to the loop indicated in the figure:

U(x) = (r+jwl)dxI(x) + U(x) + dU(x)
dU(x) + (r + jol)dxI(x) =0

dU(x)
dx

+zI(x) =0




The distributed parameters circuit m

rdx joldx

A \/ 1di(x) A

U(x) @ gax — Jac'dx \i7(x)1dU (x)

dx

— _—
— -

— I_(x)+ df(x)

While the second transmission line equation can be obtained by
applying the KCL to the node indicated in the figure:

I(x) = (g + joc)dx(U(x) + dU(x)) + I(x) + dI(x)
dI(x) + (g + jowc)dxU(x) = 0

dl(x)
dx

Note: in the above derivation, the second-order differential dU (x)dx
has been neglected with respected to the first order one dI(x).

+yUx) =0



The distributed parameters circuit m

The equivalent electrical circuit associated to an infinitesimal length
dx of the line can be extended along the whole length of the line and

obtain the so-called distributed parameters equivalent equivalent
circuit (or model).

Vi I rdx jol'dx Ex [ +dl. I,

—— joc'dx |E +dE. E

B
i
.
o

y

Note: in the above figure there is a change of nomenclature
regarding the phase-to-ground voltage: indeed, to be coherent with
the symbols used in three-phase circuits, this voltage is indicated as E.



